International Space Exploration Coordination Group Assessment of Technology Gaps for Dust Mitigation for the Global Exploration Roadmap

<u>James R. Gaier</u>, Scott Vangen, Phil Abel, Juan Agui, Jesse Buffington, Carlos Calle, Natalie Mary, Jonathan Drew Smith, and Sharon Straka

Raffaele Mugnuolo and Simone Pirrotta

Mireille Bedirian, Daniel Lefebvre, Martin Picard, Taryn Tomlinson, and Michel Wander

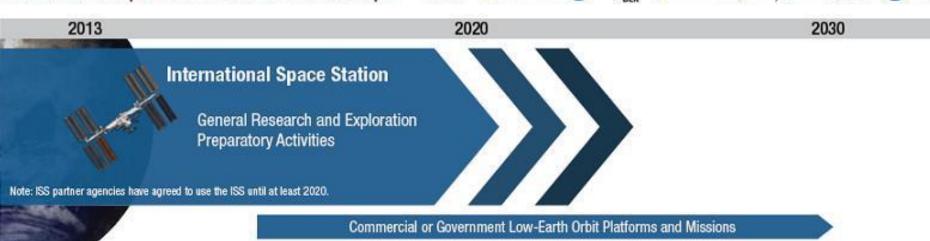
Henry Wong

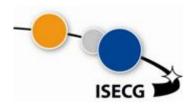
Satoshi Hosoda, Hiroshi Ueno, and Sachiko Wakabayashi

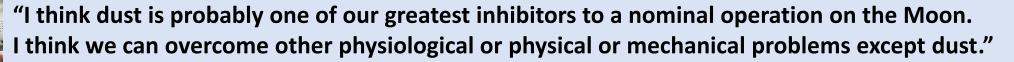
Introduction

- International Space Exploration Coordinating Group (ISECG)
 - Established in response to "The Global Exploration Strategy: The Framework for Coordination" in 2007
 - Shared vision of coordinated human and robotic space exploration
 - · Voluntary, non-binding international coordination
 - Exchange information regarding their interests, plans and activities
 - · Work together to strengthen individual exploration programs
 - Devise the collective effort
- Global Exploration Roadmap
 - Strategy for solar system exploration
 - Technology working group critical technology needs
 - Dust Mitigation & LOX-Methane Propulsion

Global Exploration Roadmap






Objectives and Approach

- Technology gap assessment objectives
 - Identify the known dust mitigation challenges
 - · Catalog dust mitigation solutions developed to date
 - Assess the gap between known challenges and SOA solutions
 - Identify partnership opportunities
- Assembled an international committee of SME's
 - · Scott Vangen (NASA) and Michel Wander (CSA) co-chair
 - Full committee weekly/bi-weekly WebEx meetings
- Presentation made at Feb 2016 ISECG meeting
 - Follow-up, detailed report
 - This summary to introduce to community

Challenges Posed by Dust

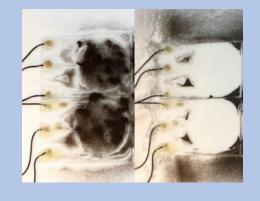
- Gene Cernan, Apollo 17 Technical Debrief

- Life Support
- EVA
- Human health & performance
- Robotics and mobility
- ISRU
- Ascent/Descent vehicles
- Surface power
- Thermal control

Dust Mitigation Challenges

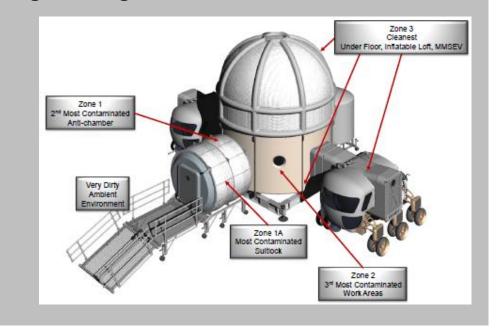
Dust Mitigation Challenges (Requirements Drivers)	Effect due to Dust Exposure	Performance Characteristics
1. Life Support Systems (LSS)	The advanced Life Support System includes atmosphere revitalization, water recovery, solid waste processing, thermal control, and other subsystems. Then each subsystem was further broken into functional	The LSS must handle a basic particulate load defined in NASA TP-1998-207978, p. 35 and refined by ICES-2014-199 within the concentration limits defined by NASA-STD-3001 for <3 mg/m 3 total dust for particles <100 μ m in aerodynamic
1.1 Atmosphere Revitalization Subsystem	The Atmosphere Revitalization subsystem includes cabin ventilation, trace contaminant control, CO ₂ removal, CO ₂ reduction, O ₂ generation, CO ₂ conditioning, and the particulate removal functional elements.	The AR subsystem architecture interfaces intimately with the cabin ventilation architecture. Particulate control is an integral functional component of the cabin ventilation functional element. The core AR subsystem equipment

Dust Mitigation Solutions

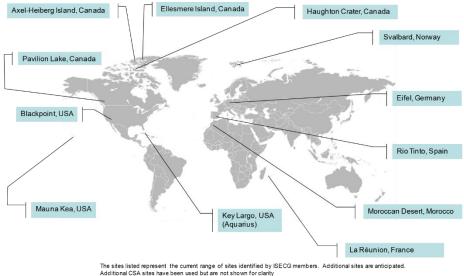


Wide variety of approaches

- Mars and Moon
- Little asteroid work
- Nearly all TRL < 6


Active Technologies

Operational Strategies


Engineering Solutions

Verification Testing

ISECG

- Identified facilities available for testing
 - 17 high fidelity simulants
 - 79 high fidelity environmental chambers
 - 5 open air test beds
 - 12 analog sides

Technology Gap Assessment

- Many systems use similar components
- Identified 13 key technology challenge areas
 - Rotary Seals
 - Linear Motion Seals
 - Static Seals
 - Mating Connectors
 - Filters (Mechanical, Gas Scrubbers, and Other)
 - Human Health (Biological)
 - Thermal Control Surfaces
 - Optical Surfaces
 - Other Surfaces (Performance)
 - Flexible Materials including Fabrics
 - Chemical Contamination and Corrosion/Oxidation
 - Characterization of Dust and Regolith
 - High-Fidelity Simulation Chambers

Technology Gap Assessment

Identified system components for each challenge area

	Key Technical Challenge Areas	<u>ECLSS</u>	EVA & Airlocks	Mobility & Robotics	<u>ISRU</u>	Ascent/ Descent Vehicles	<u>Systems</u>
1	Rotary Seals	Fans, louvers, pumps	Articulation Joints - Bearings	Wheel bearings, motor bearings, steering & suspension linkages, hinges	Drill & tool bearings, motor bearings, linkages, hinges,	Landing gear, deployment ramps	Fans, Wheels, Antenna

Technology Gap (GER Extended Human Mission)

		Technology Gap		
	Key Technical Challenge Areas	Moon	Mars	NEOs*
1	Rotary Seals	NASA JAXA CSA	NASA CSA	
2	Linear Motion Seals			
3	Static Seals	NASA	NASA	
4	Mating Connectors	NASA	NASA	
5	Filters – Mechanical, Gas Scrubbers, and Other	NASA	NASA	
6	Human Health (Biological)	NASA ESA	NASA ESA	
7	Thermal Control Surfaces	NASA CSA	NASA CSA	
8	Optical Surfaces	NASA CSA	NASA CSA	
9	Other Surfaces – Performance	ESA	ESA	
10	Flexible Materials	NASA		
11	Chemical Contamination and Corrosion/Oxidation	NASA	NASA	
12	Characterization of dust and regolith	NASA JAXA CSA	NASA ESA	NASA
12		ESA		
13	High-Fidelity Simulation Chambers	NASA ESA	NASA	NASA
12	Characterization of dust and regolith	NASA CSA ESA	NASA ESA	NASA
13	High Fidelity Simulants and Environmental Chambers	NASA CSA ESA	NASA CSA	NASA

Legend for color coding:

Confident for extended human mission (1+ month Lunar/1+ year Mars)

Possible TRL 3 solutions for extended human mission

No TRL 3 solutions for extended human mission

Note: Agencies listed are either involved in ongoing research or have already developed solutions in that area.

Experience/Knowledge Gap

	Key Technical Challenge Areas	Experience/Knowledge Gap		
		Moon	Mars	NEOs*
1	Rotary Seals	NASA JAXA	NASA	
2	Linear Motion Seals			
3	Static Seals	NASA	NASA	
4	Mating Connectors	NASA	NASA	
5	Filters - Mechanical, Gas Scrubbers and Other	NASA	NASA	
6	Human Health (Biological)	NASA	NASA	
7	Thermal Control Surfaces	NASA JAXA		
8	Optical Surfaces	NASA	NASA	
9	Other Surfaces – Performance			
1	Flexible Materials –	NASA		
0	r lexible iviaterials —	NASA		
1	Chemical Contamination and Corrosion/Oxidation	NASA	NASA	
1	Chemical Contamination and Corrosion/Oxidation	11/10/1	1471071	
1	Characterization of dust and regolith	NASA	NASA	NASA
2	Characterization of dust and regolith	1111011	1111011	1 (1 1)/1 1
$\frac{1}{2}$	High-Fidelity Simulants and Environmental Chambers	NASA	NASA	NASA
3				

Legend for color coding:

Systems that worked effectively (for NASA during Apollo (3 days) on the moon; Worked effectively on rovers on Mars (> 1 year))

Systems where there is no experience, but active research

Systems that did not work well (for NASA during Apollo (3 days) on the moon; Did not work effectively on Mars (> 1 year))

No comprehensive research past or present

Funding/Research Gap

	Key Technical Challenge Areas	Funding/Research Gap		
		Moon	Mars	NEOs*
1	Rotary Seals	NASA JAXA CSA	NASA CSA	
2	Linear Motion Seals	CSA	CSA	
3	Static Seals	NASA	NASA	
4	Mating Connectors	NASA CSA	NASA	
5	Filters – Mechanical, Gas Scrubbers, and Other	NASA	NASA	
6	Human Health (Biological)	NASA ESA	NASA ESA	
7	Thermal Control Surfaces	NASA CSA	NASA CSA	
8	Optical Surfaces	NASA JAXA CSA	NASA CSA	
9	Other Surfaces – Performance	ESA CSA	ESA	
10	Flexible Materials	NASA		
11	Chemical Contamination and Corrosion/Oxidation	NASA	NASA	
12	Characterization of Dust and Regolith	NASA JAXA ESA CSA	NASA ESA	NASA
13	High Fidelity Simulants and Environmental Chambers	NASA JAXA ESA CSA	NASA	NASA

Legend for color coding:

More than one agency involved in ongoing or anticipated research

One agency involved in ongoing or anticipated research

No agencies involved in research on this aspect

Scheduling Gap

	GER Mission	CDR Need Dates	R&D Start Dates
Technology Solutions/Programs	Start Dates	(est.) (note 1)	(est.) (note 2)
Lunar Dust Mitigation (Robotics)	2020	2016	2012
Lunar Dust Mitigation (Human)	2026	2022	2016
Martian Dust Mitigation (Robotic)	2020	2016	2012
Martian Dust Mitigation (Human)	2030+	2022+	2018+
NEO Dust Mitigation (Robotic)	2022	2018	2014

Legend for color coding:

Time to start active research is in the future by at least one year taking into account the GER schedule

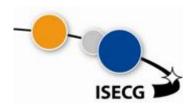
Time to start active research is this year (2016) taking into account the GER schedule

Time to start active research has passed, likely contributing to delays in the GER

Note 1: Typical space development program runs 6 - 10+ years Critical Design Review (CDR) 1 - 2 years after start Dust mitigation technologies must be TRL 4 by Preliminary Design Review (PDR), and TRL 6 by CDR

Note 2: Assumed that the dust mitigation programs take 4 years to develop viable solutions and techniques. Where ESA has provided estimates for research programs, those dates were entered.

10 Key Findings


- Dust is still a principal limiting factor in returning to the lunar surface for missions of any extended duration.
- Viable technology solutions have been identified, but need maturation to be available to support missions.
- No single technology completely solves the challenges of dust, but rather a suite of technologies will be required to address them.
- Gaps in existing dust mitigation technologies have been identified and require strategies for closure before extended lunar missions are undertaken.
- Situational awareness of the dust mitigation challenges needs to be infused into all
 aspects of mission architecture and operations.
- Investment in dust mitigation solutions increases system longevity and performance (including human-system performance).

Key Findings (cont.)

- Resources (power, mass, volume) may be required to implement some of the mitigation solutions, but are offset by reduced logistics costs for spares, redundancies, etc.
- Solutions that work in one environment may not be fully applicable to other environments or destinations (e.g., chemistry differences, atmospheres, particles, locations on previously explored bodies).
- Trapped volatile gases are an additional factor of potential concern, which may require unique mitigation solutions.
- International cooperation within the dust mitigation community has already proved beneficial. This is currently limited to sharing information, but further opportunities are expected as commitment to narrowing the technology gap continues.

Summary

- Report will be helpful to organizations within agencies responsible for dust mitigation
 - Technology development program offices
 - Systems engineering groups
 - Exploration architecture teams
 - Program/project-level management
- Points the way for efficient use of the resources of the world's space agencies
 - Available simulants
 - Facilities and analog sites
 - Areas of active research
- Spurs collaboration and cooperation among the agencies
- Attracts prompt and proper attention, support, and work addressing dust mitigation associated with exploration destinations critical to the success of the GER scenario